Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: covidwho-2071511

RESUMO

Caloric restriction promotes longevity in multiple animal models. Compounds modulating nutrient-sensing pathways have been suggested to reproduce part of the beneficial effect of caloric restriction on aging. However, none of the commonly studied caloric restriction mimetics actually produce a decrease in calories. Sodium-glucose cotransporter 2 inhibitors (SGLT2-i) are a class of drugs which lower glucose by promoting its elimination through urine, thus inducing a net loss of calories. This effect promotes a metabolic shift at the systemic level, fostering ketones and fatty acids utilization as glucose-alternative substrates, and is accompanied by a modulation of major nutrient-sensing pathways held to drive aging, e.g., mTOR and the inflammasome, overall resembling major features of caloric restriction. In addition, preliminary experimental data suggest that SGLT-2i might also have intrinsic activities independent of their systemic effects, such as the inhibition of cellular senescence. Consistently, evidence from both preclinical and clinical studies have also suggested a marked ability of SGLT-2i to ameliorate low-grade inflammation in humans, a relevant driver of aging commonly referred to as inflammaging. Considering also the amount of data from clinical trials, observational studies, and meta-analyses suggesting a tangible effect on age-related outcomes, such as cardiovascular diseases, heart failure, kidney disease, and all-cause mortality also in patients without diabetes, here we propose a framework where at least part of the benefit provided by SGLT-2i is mediated by their ability to blunt the drivers of aging. To support this postulate, we synthesize available data relative to the effect of this class on: 1- animal models of healthspan and lifespan; 2- selected molecular pillars of aging in preclinical models; 3- biomarkers of aging and especially inflammaging in humans; and 4- COVID-19-related outcomes. The burden of evidence might prompt the design of studies testing the potential employment of this class as anti-aging drugs.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Transportador 2 de Glucose-Sódio , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Inflamassomos , Reposicionamento de Medicamentos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Envelhecimento , Glucose/uso terapêutico , Serina-Treonina Quinases TOR , Sódio , Cetonas/uso terapêutico , Ácidos Graxos/uso terapêutico
2.
Trials ; 23(1): 433, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: covidwho-2320256

RESUMO

BACKGROUND: Type 1 diabetes (T1D) places an extraordinary burden on individuals and their families, as well as on the healthcare system. Despite recent advances in glucose sensors and insulin pump technology, only a minority of patients meet their glucose targets and face the risk of both acute and long-term complications, some of which are life-threatening. The JAK-STAT pathway is critical for the immune-mediated pancreatic beta cell destruction in T1D. Our pre-clinical data show that inhibitors of JAK1/JAK2 prevent diabetes and reverse newly diagnosed diabetes in the T1D non-obese diabetic mouse model. The goal of this study is to determine if the JAK1/JAK2 inhibitor baricitinib impairs type 1 diabetes autoimmunity and preserves beta cell function. METHODS: This will be as a multicentre, two-arm, double-blind, placebo-controlled randomized trial in individuals aged 10-30 years with recent-onset T1D. Eighty-three participants will be randomized in a 2:1 ratio within 100 days of diagnosis to receive either baricitinib 4mg/day or placebo for 48 weeks and then monitored for a further 48 weeks after stopping study drug. The primary outcome is the plasma C-peptide 2h area under the curve following ingestion of a mixed meal. Secondary outcomes include HbA1c, insulin dose, continuous glucose profile and adverse events. Mechanistic assessments will characterize general and diabetes-specific immune responses. DISCUSSION: This study will determine if baricitinib slows the progressive, immune-mediated loss of beta cell function that occurs after clinical presentation of T1D. Preservation of beta cell function would be expected to improve glucose control and prevent diabetes complications, and justify additional trials of baricitinib combined with other therapies and of its use in at-risk populations to prevent T1D. TRIAL REGISTRATION: ANZCTR ACTRN12620000239965 . Registered on 26 February 2020. CLINICALTRIALS: gov NCT04774224. Registered on 01 March 2021.


Assuntos
Diabetes Mellitus Tipo 1 , Animais , Azetidinas , Peptídeo C , Ensaios Clínicos Fase II como Assunto , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Método Duplo-Cego , Glucose/uso terapêutico , Humanos , Janus Quinases/uso terapêutico , Camundongos , Estudos Multicêntricos como Assunto , Purinas , Pirazóis , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Transcrição STAT/uso terapêutico , Transdução de Sinais , Sulfonamidas , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...